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The common factor model assumes that the linear coefficients (intercepts and factor loadings)
linking the observed variables to the latent factors are fixed coefficients (i.e., common for all
participants). When the observed variables are participants’ observed responses to stimuli,
such as their responses to the items of a questionnaire, the assumption of common linear
coefficients may be too restrictive. For instance, this may occur if participants consistently
use the response scale idiosyncratically. To account for this phenomenon, the authors
partially relax the fixed coefficients assumption by allowing the intercepts in the factor model
to change across participants. The model is attractive when m factors are expected on the
basis of substantive theory but m � 1 factors are needed in practice to adequately reproduce
the data. Also, this model for single-level data can be fitted with conventional software for
structural equation modeling. The authors demonstrate the use of this model with an empirical
data set on optimism in which they compare it with competing models such as the bifactor
and the correlated trait–correlated method minus 1 models.
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One of the most widely used statistical models in the
social sciences is without doubt the common factor model.
In this model a set of observed variables is expressed as a
linear function of a smaller set of common factors plus an
error term. In addition, it is assumed that the relationship
between each observed variable (e.g., item score) and the
underlying common factors is linear and that the linear
coefficients (intercepts and factor loadings) are invariant
across respondents. In other words, the intercepts and factor

loadings do not change from respondent to respondent. In
this article, we focus on the latter assumption.

Is the assumption that the coefficients are invariant across
respondents reasonable in practice? This assumption has
often been overlooked but has been well known for a long
time. Wolfle (1940), in an extensive review of the factor
analysis literature, discussed this assumption and suggested
that until factor methods allow for the possibility of indi-
vidual differences in coefficients, the coefficients should be
interpreted as averages of individual coefficients that vary
over individuals to an unknown degree. According to this
assumption, the expected relationship between a respon-
dent’s common factor level and his or her response to a
measured variable is the same for all respondents with a
fixed level on the common factor. However, when the
measured variables are items on a questionnaire, it is com-
mon to observe that different respondents use the response
scale differently in a consistent fashion.

Consider three examples. The first is differential thresh-
olds. Participants in a study assessing perceived pain are
asked to rate their pain using a continuous scale on a Palm
Pilot. It is likely that some participants are more sensitive to
pain than others, in which case a 10 on the pain scale for one
participant is not the same as a 10 for another participant.
For a scale with items measuring perceived pain, it is
reasonable to assume that respondents with a similar pain
threshold will use the response scale in a similar way.
However, respondents with widely different pain thresholds
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are likely to use the response scale differently. As another
example, consider a questionnaire designed to assess per-
ceived peer use of alcohol in which the response scale varies
from never drinks to drinks a lot. Although all participants
may be in general agreement as to the meaning of never
drinks, drinks a lot is more ambiguous and is open to
different interpretations by respondents.1 In fact, partici-
pants may use the response scale differently anytime there
are either no anchors for points on the response scale or the
anchors are vague (Krosnick & Fabrigar, in press). The
second example is acquiescence or yea-saying (Billiet &
McClendon, 2000; Marsh, 1996). In personality question-
naires as well as in surveys, some respondents have a
tendency to endorse all questions. As a result, answers may
depend on the wording of the question for some but not for
all individuals. The third example is social desirability
(Paulhus, 2002). Some respondents are more likely to en-
dorse the items that tap socially desirable topics. They
present themselves in a manner that will be viewed favor-
ably by others, whereas some respondents appear to be more
resistant to this bias. These examples illustrate that the
assumption of invariant coefficients is not always reason-
able.

In this article, we propose a random intercept factor
analysis model in which the intercepts, but not the factor
loadings, are allowed to vary across individuals to accom-
modate these phenomena. The intercepts are treated as a
random effect. Thus, individual intercepts are not directly
estimated, but rather their variance in the population is
estimated. Although common factor models with random
components have been proposed before in the literature
(see, e.g., Ansari, Jedidi, & Dube, 2002, and the references
therein), such proposals have been within the context of
multilevel data. In contrast, the model proposed here is for
single-level data. Throughout the remainder of this article,
the term fixed coefficients is used to refer to parameters that
are the same for all individuals. In contrast, the term random
coefficients is used to refer to parameters that are allowed to
vary across individuals.

A random intercept factor analysis model may be
called for when modeling individuals’ observed re-
sponses to stimuli, such as their responses to the items of
a questionnaire. Specially, m factors may be expected on
the basis of theory but an additional factor is needed to
adequately fit the data because of variability in the inter-
cepts across participants. The additional factor is often
thought of as a methodological artifact and thus spurious
from a substantive viewpoint. Spurious factors have been
discussed extensively in the factor analysis literature.
One type of spurious factor that often appears in practice
is related to the wording of items. For example, all the
negatively worded items may load on one factor, and all
the positively worded items may load on another factor,
even though all items on the measurement instrument
measure the same construct (Marsh, 1996). When this

occurs, one possibility is to model the data with two
correlated factors, in which the positively worded items
load on one factor and the negatively worded items load
on the second factor. Another possibility is to use a
bifactor model. In the bifactor model, a general factor
loads on all items, and two additional factors are used to
model the residual covariation among the items that is not
captured by the general factor. One additional factor
accounts for the residual covariation among the positive
items, whereas the second additional factor accounts for
the residual covariation among the negative items. A
third possibility is to use a multimethod data approach.
Thus, a model for multimethod data is used to fit the
substantive traits being measured with two methods (pos-
itive and negatively worded items). An interesting model
to fit in this context is Eid’s (2000) correlated trait–
correlated method minus one, CT-C(M-1), model be-
cause its model structure is a special case of the model
structure implied by the bifactor model. A fourth possi-
bility that we introduce in this article is to use a one
factor model with a random intercept.

In the remainder of this article, we first review the com-
mon factor model with fixed coefficients. We then consider
the bifactor model. Finally, we introduce our random inter-
cept extension of the common factor model. We show that
by introducing suitable assumptions, the random intercept
factor model is equivalent to a factor model having an
additional factor with constant factor loadings that is or-
thogonal to all “substantive” common factors. The model
can be fit with standard programs for structural equation
modeling. To illustrate our presentation, we apply a random
intercept factor model to an empirical data set, in which we
compare this model with the bifactor model, a model with
more factors than would be expected from substantive the-
ory, and a CT-C(M-1) model. We conclude with sugges-
tions for applied researchers on how to choose among these
models.

The Common Factor Model

Consider the responses of N individuals to a set of p
items. We denote the response of participant j to item i using
yij. Algebraically, the standard m-dimensional factor model
for yij can be written as

yij � �i � ��i�j�eij. (1)

In Equation 1, �i denotes the intercept for item i, �i denotes
the vector of factor loadings for item i, �j denotes partici-
pant j’s vector of common factors, and eij denotes an error
term for participant j on item i. Notice that in this model the
common factors, �, and error terms, e, include a subscript j.

1 We are grateful to John Graham for this example.
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Variables that include a subscript j are random; they change
across participants. In contrast, the intercept �i and the
factor loadings �i for each item do not include a subscript j.
They are fixed coefficients that are invariant across partic-
ipants. Figures 1 and 2 depict graphically a one-factor model
(Model A) and a two-factor model (Model B), respectively.

We can write Equation 1 in a more compact matrix form
using

y � � � �� � e, (2)

where y, �, and e are p � 1 vectors; � is a p � m matrix
of factor loadings; and � is an m � 1 vector of factor scores.
The common factor model assumes the following in the
population of respondents.

1. The mean of the common factors is zero.

2. The mean of the error terms is zero.

3. The error terms are uncorrelated with each other.

4. The error terms are uncorrelated with the common
factors.

These assumptions, coupled with Equation 2, imply the
following structure for the mean vector and covariance
matrix of the observed variables:

�y � � �y�������, (3)

where � denotes the m � m covariance matrix of the
common factors, and � denotes the p � p covariance

matrix of the error terms. � is a diagonal matrix by
Assumption 3.

In an m-factor model, two individuals with the same
level on the latent factors have the same expected score
on the items. However, they may not have the same
observed score on the items because of the random error
term, e, in Equation 2. This error term includes both
measurement error and individual differences on addi-
tional factors that are not explicitly modeled. Measure-
ment error is random noise; individual differences on
unmodeled additional factors may be systematic. Mea-
surement error and systematic individual differences can-
not typically be separated and are referred to as unique
factors because they are unique to each item. Sometimes,
however, some systematic individual differences are
common to a small set of items, which can be captured by
specific factors, yielding the bifactor model.

The Bifactor Model

Holzinger and Swineford (1937) proposed the bifactor
model in the context of classical intelligence theory. In this
model, each observed variable depends on two factors: a
general intelligence factor and a smaller factor characteriz-
ing a specific subset of the items. The idea behind the
bifactor model is to capture residual covariation among the
observed measures that is not captured by the general factor
by introducing several smaller factors, each of which is
specific only to a small set of measures. General factors are
assumed to be uncorrelated with these specific factors, but

Figure 1. Model fitted to the Life Orientation Test (LOT) data (E. C. Chang et al., 1994). The
items are numbered as in the original LOT questionnaire. Items 1, 4, and 5 are positively worded,
whereas Items 3, 8, 9, and 12 are negatively worded. Variances are depicted with double-headed
arrows from a variable to itself, factor loadings as single-headed arrows, and interfactor correlations
as double-headed arrows between two latent variables. The variances of the factors are fixed to 1 for
identification.
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both the general and specific factors may be of substantive
interest. A bifactor model with one general factor and two
uncorrelated specific factors is depicted graphically in Fig-
ure 3 (Model C).

Unlike the bifactor model, which uses specific factors
that may be of substantive interest to capture residual
covariation unaccounted for by the common factors, the
random intercept factor model incorporates one addi-
tional factor to account for individual differences, which
is not motivated substantively. Rather, this additional
dimension corresponds to the respondents’ idiosyncratic
usage of the response scale.

The Common Factor Model With a
Random Intercept

Like the bifactor model, the random intercept factor
model also attempts to model systematic individual differ-
ences not captured by the common factors, but it does so
differently. In the random intercept factor model, we relax
the assumption of an intercept common to all respondents
by allowing the intercept to vary from respondent to respon-
dent. This model is depicted in Figure 4 (Model D). Alge-
braically, instead of Equation 1, we write

yij � �ij � ��i�j � eij �ij � �i � �j. (4)

Note that the intercept �ij contains a subscript j. The inter-
cept �ij is partitioned into a fixed part, �i, common to all
respondents but that varies from item to item, and a random
part, �j, that varies from respondent to respondent but that is

common to all items. Thus, the term �j captures individual
differences in scale usage that are common across items.

In matrix form, we write Equation 4 as

y � � � �� � e � � � � 1�, (5)

where, as before, y, �, and e are p � 1 vectors; � is a p �
m matrix of factor loadings; and � is an m � 1 vector. In
addition, � and 1 are p � 1 vectors, and � is a scalar.

In this model, we let the variance of � be denoted as 	.
We do not estimate the intercept �j for each respondent.
Rather, we estimate the variance 	 of the intercepts �j in the
population of respondents.

In addition to the four common factor model assumptions
above, we assume the following in the population of re-
spondents:

5. The mean of the random component of the inter-
cept, �, is zero.

6. The random component of the intercept, �, is un-
correlated with the error terms.

7. The random component of the intercept, �, is un-
correlated with the common factors.

Assumptions 5 and 6 are imposed to identify the model.
Assumption 7 implies that individual differences in the use
of the response scale are not related to the participants’ level
on the common factors being measured.

Under the random intercept model, a respondent’s ex-
pected response to an item given his or her level on the

Figure 2. Model fitted to the Life Orientation Test (LOT) data (E. C. Chang et al., 1994). The items
are numbered as in the original LOT questionnaire. Items 1, 4, and 5 are positively worded, whereas
Items 3, 8, 9, and 12 are negatively worded. Variances are depicted with double-headed arrows from a
variable to itself, factor loadings as single-headed arrows, and interfactor correlations as double-headed
arrows between two latent variables. The variances of the factors are fixed to 1 for identification.
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common factors and his or her level on the random com-
ponent of the intercept � is

E
 yij� � �i � ��i�j � �j. (6)

Now, under the model, two respondents, A and B, with the
same level on the common factors, �A and �B, need not
have the same expected scores, �i � ��i�j � �j, on the item
because in general their levels on the random components of
the intercept will not be equal, �A � �B. In other words,
even when Respondents A and B have the same level on the
common factors, 
A and 
B, the expected scores may differ.
Because �j is a random variable that changes across respon-
dents but is common to all items for a given respondent, we
interpret �j as the idiosyncratic use of the response scale by
respondent j.

Equation 5, coupled with Assumptions 1–7, implies the
following structure for the mean vector and covariance
matrix of the observed variables (see the Appendix):

�y � � �y � 1	1� � ���� � �, (7)

where 1 is a p � 1vector of ones. This model is identified

by the usual rules for the identification of the factor model
(see Bollen, 1989).

In the traditional m-factor model without a random inter-
cept, the term �j is embedded into the error term e*ij � �j �
eij. This can be seen by reexpressing the two equations in
Equation 4 as a single equation:

yij � �ij � ��i�j � eij � �i � ��i�j � 
�j � eij�

� �i � ��i�j � e*ij. (8)

In contrast to the traditional m-factor model, in the random
intercept model a portion of the error term e*ij is extracted
and modeled explicitly. Because �j is a random variable
with mean zero and variance 	, the inclusion of �j in the
model not only reduces the residual variance of the items
but also accounts for a portion of the items’ covariation.
This is reflected in Equation 7, where the term 1	1� is added
to the covariance structure of the common factor model
(Equation 3). Also, a random intercept m-factor model will
always fit as well as or better than a traditional m-factor
model because of the estimation of one more parameter. The
traditional m-factor model will only fit as well as a random

Figure 3. Model fitted to the Life Orientation Test (LOT) data (E. C. Chang et al., 1994). The items
are numbered as in the original LOT questionnaire. Items 1, 4, and 5 are positively worded, whereas
Items 3, 8, 9, and 12 are negatively worded. Variances are depicted with double-headed arrows from a
variable to itself, factor loadings as single-headed arrows, and interfactor correlations as double-headed
arrows between two latent variables. The variances of the factors are fixed to 1 for identification.
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intercept m-factor model when the variance of the random
intercept, 	, is zero.

We show in the Appendix that a common factor model
with m factors and a random intercept with Assumptions
1–7 cannot be empirically distinguished from a common
factor model with m � 1 factors in which the first factor has
constant factor loadings and is uncorrelated with all remain-
ing m factors. Thus, if one finds the mean and covariance
structure in Equation 7 to be a reasonable model for the
observed data, the interpretation of the first factor as a
random intercept or as a substantive factor must be made
exclusively on substantive, not statistical, grounds. The
random intercept factor model with Assumptions 1–7 im-
plies Equation 7, but the converse is not true. This interpre-
tation problem is not unique for this model. Rather, it holds
for any mean and structural equation model (see Browne,
1982). In other words, the random intercept model incorpo-
rates the random intercept as a latent variable. It may be
interpreted as a substantive factor, for example, reading
ability. However, the substantive factor would have equal
factor loadings for all measured variables, and the factor
would be uncorrelated with all other factors in the model.
Theory, rather than statistical results, determines the inter-
pretation of the additional factor.

When no restrictions are imposed on �, Equation 7 can
be estimated by minimizing a discrepancy function (e.g.,
maximum likelihood) with conventional software for struc-

tural equation modeling. The term 1	1� is similar to the
term ����; to estimate 1	1�, one simply declares an
additional factor, which corresponds to the random intercept
�. As depicted in Figure 4 (Model D), the factor loadings for
this additional factor are set equal to 1 for all items, and the
variance of this additional factor, 	, is left free to be
estimated.

In closing this section, we point out that the random
intercept factor model is not invariant to reverse coding of
the items. This is important because, most often, question-
naires consist of positively worded and negatively worded
items to avoid acquiescence effects. The negatively worded
items are then reverse coded prior to analyzing the data. In
the Appendix, we show how to fit a random intercept factor
model when a subset of the items has been reverse coded
prior to the analysis. Also, because the model is not scale
invariant, it should be fitted to a covariance matrix. Fitting
it to a correlation matrix results in incorrect test statistics,
point estimates, and standard errors (see Cudeck, 1989).

Some Caveats Regarding the Application of the
Random Intercept Model to Likert-Type Items

Responses to questionnaire items are often measured on a
graded response scale, such as a Likert (1932) scale. Be-
cause Likert scores are actually ordered categories, in prin-
ciple they should be treated as such either by an extension

Figure 4. Model fitted to the Life Orientation Test (LOT) data (E. C. Chang et al., 1994). The
items are numbered as in the original LOT questionnaire. Items 1, 4, and 5 are positively worded,
whereas Items 3, 8, 9, and 12 are negatively worded. Variances are depicted with double-headed
arrows from a variable to itself, factor loadings as single-headed arrows, and interfactor correlations
as double-headed arrows between two latent variables. The variances of the factors are fixed to 1 for
identification. This model is estimated as a model with two factors in which the factor loadings for
one of the factors are all fixed to 1 and its variance (the variance of the random intercepts) is
estimated.

349RANDOM INTERCEPT FACTOR ANALYSIS



of the common factor model using categorical variable
methods (i.e., by estimating the model from polychoric
correlations) or by a direct treatment of nonlinear functions
suitable for categorical responses (i.e., by item response
modeling), rather than by modeling them with a linear
model such as the common factor model and its extensions,
the bifactor model, the CT-C(M-1) model, and the random
intercept model. In practice, however, when the number of
ordered categories per item is five or more, only trivial
differences in parameter estimates are generally observed
when estimating a common factor model from product–
moment versus polychoric correlations (Bentler & Chou,
1987; DiStefano, 2002; Dolan, 1994; Olsson, 1979). Also,
the linear model can be a reasonable approximation to
Likert-type items in practice, representing average behavior
of the items over the range of the test (McDonald, 1999; see
also Maydeu-Olivares, 2005), and the approximation may
be preferred when the sample size is not large. Conse-
quently, we report factor analyses using the product–mo-
ment correlations and sample standard deviations here (i.e.,
sample covariances). However, we wish to emphasize that
prior simulation research has found differences between
analyzing product–moment correlations (or covariances)
and polychoric correlations that become increasingly sub-
stantial as the number of response options decreases below
five.

Even with five or more ordered categories, the univariate
and multivariate skewness and kurtosis of the variables
should be thoroughly checked as skewed and/or kurtotic
data can arise with Likert data. When Likert items show
substantial skewness and/or kurtosis, the standard errors and
goodness-of-fit tests obtained under normality assumptions
will be incorrect. In this case, corrections to the standard
errors and test statistic that take into account the nonnor-
mality of the data are available (e.g., Satorra & Bentler,
1994) and have been implemented in software packages for
structural equation modeling.

An Example: Modeling the Life Orientation
Test (LOT)

The LOT (Scheier & Carver, 1985) is a 12-item question-
naire. Eight of the items are designed to measure general-

ized outcome expectancies; the remaining 4 items are filler
items. One of the original items contained an idiomatic
expression and has since been removed from the LOT (see
Scheier, Carver, & Bridges, 1994). Hence, we did not in-
clude this item. The remaining 7 items are given in Table 1.
The response scale for the items is graded, consisting of five
points (0–4). Four of the items are positively worded, and
the remaining 3 items are negatively worded.

The LOT was designed to measure a single construct. How-
ever, several factor analytic studies (e.g., E. C. Chang,
D’Zurilla, & Maydeu-Olivares, 1994; L. Chang & McBride-
Chang, 1996; Marshall, Wortman, Kusulas, Hervig, & Vick-
ers, 1992; Robinson-Whelen, Kim, MacCallum, & Kiecolt-
Glaser, 1997; Scheier & Carver, 1985) have revealed that a
one-factor model does not fit well. Instead, a correlated two-
factor model in which all positively worded items load on one
factor and all negatively worded items load on another factor
provides a substantially better fit to the data. However, we
believe that it is hard to justify theoretically that optimism and
pessimism are two distinct constructs. Obviously, one may be
optimistic about the outcome of one situation and pessimistic
about the outcome of another situation. But across situations
(and the LOT measures generalized outcome expectancies), it
is not clear how a respondent can simultaneously be both
optimistic and pessimistic.

The data are from a study by E. C. Chang et al. (1994) and
consist of responses to LOT items for 389 respondents. The
item means, standard deviations, correlations, skewness,
and kurtosis are presented in Table 2. Positive and nega-
tively worded items correlate negatively in Table 2 because
the data were not recoded prior to analysis. Here, we rean-
alyze E. C. Chang et al.’s (1994) data by fitting the follow-
ing factor models: a one-factor model (Model A), a two-
factor model (Model B), a bifactor model (Model C), a
random intercept one-factor model (Model D), and a CT-
C(M-1) model (Model E; Eid, 2000). These five models are
displayed in Figures 1–5.

According to the one-factor model (Model A), a single
construct underlies the responses to the LOT items. Because
we have not recoded the negatively worded items prior to
the analysis, positively and negatively worded items should
load onto this factor with different signs. In contrast, in the

Table 1
Life Orientation Test (LOT) Items (E. C. Chang et al., 1994)

Item Original item number

1. In uncertain times, I usually expect the best. (positive) Item 1
2. I always look on the bright side of things. (positive) Item 4
3. I’m always optimistic about my future. (positive) Item 5
4. If something can go wrong for me, it will. (negative) Item 3
5. I hardly ever expect things to go my way. (negative) Item 8
6. Things never work out the way I want them to. (negative) Item 9
7. I rarely count on good things happening to me. (negative) Item 12

Note. The original item number is the order in which the item appears on the actual LOT questionnaire.
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two-factor model (Model B), the positively worded items
load onto one factor and the negatively worded items load
onto another factor, with the factors being negatively cor-
related. For the bifactor model (Model C), a three-factor
model is assumed. The factors are assumed to be uncorre-
lated. The general factor is assumed to underlie all items,
representing overall optimism. The second factor underlies
only the positively worded items, whereas the third factor
underlies only the negatively worded items. These last two
factors are to capture the specific covariation within positive
and negatively worded items that is not captured by the
overall optimism factor. The random intercept one-factor
model (Model D) is similar to the one-factor model (Model
A), except that a random component is added to its intercept
to allow for consistent individual differences in the use of
the response scale. The smaller the variance of this random
component, the closer this model is to the one-factor model.
In the limit, if this variance is zero, Model D reduces to
Model A.

In a bifactor model, the general and the specific factors
are substantive factors. However, in this application, the two
specific factors underlie the positively and negatively
worded items, respectively. Thus, it is more meaningful to
consider them as method factors rather than as specific
substantive factors. That is, the LOT data can be seen as an
instance of multimethod data measuring one trait (opti-
mism) using two methods (positive and negatively worded
items). In this context, it is interesting to fit a CT-C(M-1)
model to the LOT data (Model E) because this model
structure is a special case of the model structure implied by
the bifactor model. In the CT-C(M-1) model, (a) there are
only k � 1 method factors, where k denotes the number of
methods considered, and (b) the trait and method factors are
uncorrelated. One method is chosen as a comparison stan-
dard for all other methods. Here we use the positively
worded items as a comparison standard to assess the effect
of including negatively worded items. Thus, the method

factor corresponding to the negatively worded items mea-
sures deviations from the values predicted by positively
worded items.

In all models except for Model D, the intercepts are fixed
parameters and their estimates are the item means (see
Table 2). Thus, for Model A (the one-factor model), indi-
viduals’ predicted scores on an item result from a score on
the common factor, optimism, in addition to the intercept
value for that item (see Equation 1). For example, for all
individuals with a score of zero on the latent factor opti-
mism, the predicted score on Item 1 is 2.24 (mean on Item
1), and the predicted score on Item 2 is 2.40 (mean on Item
2). In contrast, for the random intercept one-factor model
(Model D), the intercept incorporates two components: one
that is constant over individuals but varies from item to item
and another component that is constant over items but varies
from person to person. According to Model D, an individ-
ual’s predicted score on a given item is a result of a score on
the latent factor optimism, an intercept value for that item,
and an intercept value specific to that individual. Thus, the
predicted scores on a given item will vary over individuals
even though they may have the same level on the latent
optimism factor.

All models were estimated in LISREL (Jöreskog & Sör-
bom, 2001) with the maximum likelihood fit function and
normal theory standard errors. Model A was identified by
fixing to 1.0 the variance of the factor (see the path diagram
given in Figure 1). Model B was identified by fixing to 1.0
the variances of both of the factors (see Figure 2). Model C
was identified by fixing the variances of all the factors to 1.0
(see Figure 3). Model D was identified by fixing to 1.0 the
variance of the substantive factor (see Figure 4). In addition,
all of the factor loadings for the random intercept factor are
fixed to 1.0 as shown in the figures. Model E was identified
by fixing the variances of the trait factor and the method
factor to 1.0 (see Figure 5). All models were fitted to the
covariance matrix. The input files used in the example are

Table 2
Means, Standard Deviations, and Correlations for E. C. Chang et al.’s (1994) Life Orientation
Test Data

Item Item 1 Item 2 Item 3 Item 4 Item 5 Item 6 Item 7

Item 1 1.00
Item 2 .51 1.00
Item 3 .44 .53 1.00
Item 4 �.16 �.22 �.26 1.00
Item 5 �.28 �.38 �.33 .50 1.00
Item 6 �.24 �.29 �.30 .51 .70 1.00
Item 7 �.22 �.35 �.30 .44 .54 .52 1.00
M 2.24 2.40 2.56 1.85 1.39 1.32 1.40
SD 1.00 0.99 0.99 1.05 1.03 1.00 1.07
Skewness �0.12 �0.35 �0.57 0.25 0.63 0.68 0.71
Kurtosis �0.65 �0.36 �0.11 �0.72 �0.14 0.01 �0.23

Note. N � 389.
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available in the supplementary data in the online version of
this article.

Results

The comparative fit index (CFI; Bentler, 1990), Akaike’s
information criterion (AIC; Akaike, 1987), consistent AIC

(CAIC; Bozdogan, 1987), and chi-square goodness-of-fit
tests are given in Table 3. CFI values above .95 are gener-
ally considered to indicate good fit (Hu & Bentler, 1999).
Both the AIC and the CAIC are information criteria indices
used in model comparison. These values may be used re-
gardless of whether the models are nested. The model with

Figure 5. Model fitted to the Life Orientation Test (LOT) data (E. C. Chang et al., 1994). The
items are numbered as in the original LOT questionnaire. Items 1, 4, and 5 are positively worded,
whereas Items 3, 8, 9, and 12 are negatively worded. Variances are depicted with double-headed
arrows from a variable to itself, factor loadings as single-headed arrows, and interfactor correlations
as double-headed arrows between two latent variables. The variances of the factors are fixed to 1 for
identification. The correlated traits–correlated methods minus one, CT-C(M-1), model is estimated
as a model with one substantive factor and one method factor (negatively worded items). The other
method factor, positively worded items, is chosen as reference method. The CT-C(M-1) model is
identified by fixing the variances of both the substantive factor and the method factor to 1.

Table 3
Goodness-of-Fit Tests for the Life Orientation Test Data

Model �2 df p AIC CAIC CFI

A: One-factor model 185.78 14 � .001 243.30 312.79 .87
B: Two-factor model 16.99 13 .20 46.89 121.35 1.00
C: Bifactor model 7.82 7 .35 49.68 153.91 1.00
D: Random intercept one-factor model 19.63 13 .10 50.24 124.70 .99
E: CT-C(M-1) model 10.02 10 .43 46.11 135.46 1.00

Note. N � 389. AIC � Akaike’s information criterion; CAIC � consistent AIC; CFI � comparative fit index;
CT-C(M�1) � correlated traits-correlated methods minus one.
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the smallest AIC or CAIC value is considered the model
that gives the best fit to the data while also taking into
account model complexity.

As is shown in Table 3, the one-factor model fits very
poorly according to both the chi-square test and the CFI.
Also, both the AIC and the CAIC indicate that the one-
factor model fits the worst of the five models. The chi-
square test and the CFI indicate that the two-factor model,
the random intercept model, the bifactor model, and the
CT-C(M-1) model fit the data well. The CFI and AIC are
not very helpful in choosing among these four models. The
CAIC values for the bifactor model and CT-C(M-1) model
are larger than for the other two models. The CAIC does not
distinguish between the random intercept model and the
two-factor model.

In Table 4, we provide the factor loadings for all the
models considered. We see in Table 4 that the pessimism
specific factor in the bifactor model nearly collapses, as
there is only one significant factor loading in this factor.
Also, we see that the factor loadings for the optimism
specific factor are always larger than the factor loadings for
the optimism items in the overall optimism factor. These
two facts cast serious doubts on the appropriateness of the
bifactor model in this application. The bifactor model ap-
pears to be overparameterized in this instance.

One possibility to overcome this overparameterization is
to include only one specific factor. This is precisely what the
CT-C(M-1) model does in this context. The specific factors
are treated as method factors, and one method is chosen as
standard. The factor loadings obtained when the positively
worded items are used as reference method are shown in
Table 4. We see in this table that for the negatively worded
items, the trait factor loadings are all smaller than the
method factor loadings. This implies that for the negatively
worded items, the percentage of variance accounted for by
the method is larger than the percentage of variance ac-
counted for by the optimism trait.

Another feature of this model that should give researchers
pause when using it is that the model fit changes when a
different method is used as the reference (Eid, 2000). In this
application, it is possible to use the negatively worded items
as an alternative reference method. The alternative CT-
C(M-1) model also yields a good fit to the LOT data, but not
quite as good in terms of the chi-square test as the CT-
C(M-1) model when positive items are used as reference
method: �2(11, N � 389) � 15.40, p � .17, AIC � 49.32,
CAIC � 133.70, CFI � 1.

For the random intercept one-factor model, Table 4 shows
that all the loadings are large. Also, the estimate of the
variance of the random component of the intercept is 0.13,
a rather small value relative to the variance of the substan-
tive factor, which was set to 1.0. However, the value of the
variance of the intercept is rather large relative to its stan-
dard error (SE � 0.01, z � 8.87, p � .001), and setting this

variance equal to zero, which is equivalent to specifying a
one-factor model, results in a very poor fitting model.

We can compute the percentage of the items’ variance
accounted for by the random intercept and the factor. Under
an m-factor model with a random intercept, the variance of
an observed variable is var(yi) � 	 � ��i�� � �ii, where
	 is the variance of the random component of the intercept,
��i is the m � 1 vector of factor loadings for item i, � is the
matrix of interfactor correlations, and �ii is the unique
variance of the item. The percentage of variance accounted
for by the random intercept is 	/var(yi), whereas the per-
centage of variance accounted for by the factors is (��i��)/
var(yi). The estimated unique variances for these items are
{0.58, 0.41, 0.50, 0.67, 0.31, 0.35, 0.64}. Consequently,
with the factor loading estimates reported in Table 4, the
percentage of the item’s variance accounted for by the
random intercept ranges from 10% to 13%. On the other
hand, the percentage of the item’s variance accounted for by
the optimism factor ranges from 29% to 58%. Thus, the
random intercept accounts for nonnegligible percentage of
the variance of the items, but the substantive factor accounts
for about three times the percentage of variance relative to
the random intercept.

It is clear that the two-factor model, the random intercept
one-factor model, the bifactor model, and the CT-C(M-1)
model outperform the one-factor model in terms of good-
ness of fit. Of the four, the bifactor model involves the use
of more parameters than the other three models to attain a
similar fit. Thus, it is less parsimonious than its competitors:
Its CAIC index is larger than its competitors’. From a
substantive viewpoint, an unattractive feature of the bifactor
model is that the specific factor pessimism nearly collapses
in this application. The CT-C(M-1) model yields the largest
p value and smallest AIC index but the second largest CAIC
index as it is not as parsimonious as the two-factor model
and the random intercept one-factor model. An unattractive
feature of the CT-C(M-1) model in this application is that a
larger percentage of variance of the negatively worded
items is accounted for by the method factor than by the
substantive factor. Finally, the two-factor model provides a
slightly better fit than the random intercept one-factor
model. Yet, taken together, the goodness-of-fit results do
not shed much light on which model to choose. Given the
similarity of goodness of fit for Models B and D, it appears
that choosing between these models needs to be made on
substantive rather than on statistical grounds. To shed ad-
ditional light on the substantive implications of choosing
one model over another, we turn to relating the factors
estimated in each model to exogenous variables.

Relation to Exogenous Variables

For each model, we computed factor scores via the re-
gression method (for details see Jöreskog & Sörbom, 2001,
p. 134). The factor scores were correlated with three exter-
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nal criteria: Beck’s Hopelessness Scale (BHS; Beck, Weiss-
man, Lester, & Trexler, 1974) and the Avoidance scale (AS)
and the Negative Problem Orientation (NPO) scale from the
Social Problem Solving Inventory—Revised (D’Zurilla,
Nezu, & Maydeu-Olivares, 2002). The BHS is a question-
naire used to predict depression, suicidal ideation, and sui-
cidal intent. The NPO scale measures the general tendency
to view problems occurring in living as a significant threat
to well-being, to doubt one’s personal ability to solve prob-
lems successfully, and to easily become frustrated and upset
when confronted with problems. Finally, the AS measures a
style used to confront problems in living characterized by
procrastination, passivity or inaction, and dependency. It is
expected that pessimistic individuals are more likely to
engage in hopeless thinking and avoidant behaviors and in
general to be negatively oriented toward solving problems
in everyday living. Optimism is expected to correlate
strongly and negatively with these three criteria. Table 5
shows the correlations between factor scores for the differ-
ent models fitted to the LOT data and these criteria vari-
ables.

In their original work on the LOT, Scheier and Carver
(1985) treated the set of items as unidimensional. Indeed,
they advocated the use of a sum score after reversing the
score for the negatively worded items to investigate the
relationship between optimism and exogenous criteria. Yet,
their factor analyses did not fully support the use of a
one-dimensional model. They found that the two-factor
model significantly outperformed the fit of the one-factor
model. In Table 5 we also provide the correlations between
the sum score obtained after reversing the score for the
negatively worded items and the criteria.

The one-factor model with a random intercept provides

support to Scheier and Carver’s (1985) heuristic. As with
other random effects models, such as latent growth curve
models or multilevel models, the specific values (i.e. factor
scores) of the random component, �, for each individual are
not estimated when fitting the model. Rather, the variance of
the intercept factor, 	, is estimated. To obtain the specific
values for each individual, estimates would need to be
obtained after the model is fit to the data. We see in Table
5 that the correlations between the factor scores for the
optimism factor and the criteria are almost identical to those
between the sum score and the criteria. In addition, the
correlations between the estimates for the random intercept
and the criteria are nonsignificant or, if significant, of neg-
ligible magnitude. The random intercept can be interpreted
as a method factor negligibly related to external criteria.
Thus, because (a) the one-factor model with a random
intercept fits the data and (b) the optimism factor scores and
the sum score are highly correlated (.991 in this applica-
tion), researchers are justified to use the sum score as a
proxy for the optimism factor to investigate relations be-
tween optimism and external criteria. Researchers may also
wish to investigate relations between the random intercept
estimates and external criteria, but as this application shows,
these are likely to be negligible.

In contrast, the interpretation of the relationships between
factors and external criteria for Models B, C, and E present
substantive questions that are not so easy to answer. Thus,
for the two-factor model, two factor scores are computed,
measuring optimism and pessimism, respectively. As ex-
pected, the optimism factor score correlates strongly and
negatively with all three criteria, and the pessimism factor
score correlates strongly and positively with all three crite-
ria. Yet, what does it mean substantively that optimism and

Table 5
Correlations Between Factor Scores and Selected Criteria

Model and factor score BHS AS NPO

Two-factor model
Optimism �.53** �.32** �.44**

Pessimism .67** .42** .59**

Bifactor model
Specific optimism �.29** �.16** �.22**

Specific pessimism .35** .17** .29**

Overall optimism �.70** �.45** �.62**

Random intercept
Optimism �.70** �.43** �.61**

Random intercept .13* .09 .14*

CT-C(M�1) model
Optimism �.51** �.31** �.43**

Method factor for negatively worded items .48** .30** .44**

Sum score �.71** �.44** �.61**

Note. N � 311. BHS � Beck’s Hopelessness Inventory; AS � Avoidance scale of the Social Problem Solving
Inventory—Revised; NPO � Negative Problem Orientation scale of the Social Problem Solving Inventory—
Revised; CT-C(M�1) � correlated traits-correlated methods minus one.
* p � .05. ** p � .01.
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pessimism are distinct factors (albeit related)? How can a
respondent be optimistic and pessimistic across situations?
Turning to the bifactor model, the sum score correlates .963
with the general factor in this model. Thus, in Table 6, the
factor score for overall optimism behaves very much like
the sum score. However, the factor scores for the specific
factors also correlate significantly (although more weakly)
and in the expected directions with the criteria. Finally, the
correlations between factor scores and external criteria for
the CT-C(M-1) model (using positively worded items as
reference method) present clear interpretation problems.
Correlations between the trait factor (optimism) and exter-
nal criteria are substantially weaker than between the sum
score and external variables. In fact, they are of the same
magnitude (but opposite directions) as the correlations be-
tween the method factor and external variables. Also, the
CT-C(M-1) model can be specified with the negatively
worded items as reference method. In this case, the factor
score correlations with external criteria are similar to those
found for the sum score. It correlates .67, .42, and .60 with
the BHS, AS, and NPO scale, respectively. Also, the
method factor (positively worded items) scores correlate
0.20, �.10, and �.13 with the external criteria. It is known
from Eid’s (2000) original work that the two CT-C(M-1)
models do not produce the same fit indices. However, even
more important, we have shown here that the empirical
results with external criteria are highly discrepant. These
findings should give researchers pause about using this
approach.

In summary, we have shown that by introducing a random
component in the intercept of a one-factor model we do not
reject Scheier and Carver’s (1985) original hypothesis that
optimism is indeed a one-dimensional construct. We find
our solution more parsimonious from a substantive view-
point than hypothesizing a two-factor factor model (e.g.
E. C. Chang et al., 1994), a one-factor model with correlated
errors (e.g., Scheier & Carver, 1985), or a bifactor model.
Also, it is free from the interpretation problem of the CT-
C(M-1) model.

Did We Have Power to Distinguish Between the
Alternative Models?

Because the alternative models we considered in model-
ing the LOT data are hard to distinguish statistically in the
data set we considered, a reviewer raised the issue of
whether the models could be distinguished in other data
sets. To address this very important question, we performed
a small simulation study to investigate the power of the
chi-square test statistic to distinguish among the following
four alternative models used in the LOT application: (a) a
one-factor model; (b) a two-factor model in which the
positively worded items load on one factor, the negatively
worded items load on another factor, and both factors are
correlated; (c) a bifactor model; and (d) a random intercept
one-factor model. Multivariate normal data were generated
according to Models B, C, or D and estimated using all four
models. Sample sizes were in all cases N � 200, N � 400,
N � 600, and N � 1,000. Estimation was performed using
maximum likelihood. Also, we investigated models with
similar characteristics (i.e., number of items, parameter val-
ues) to those found in the LOT data.

Two-Factor Model as Data Generation (True)
Model

To generate data according to this model, we used the
following matrix of factor loadings:

�� � � .55 .65 .75 .85 0 0 0 0
0 0 0 0 .55 .65 .75 .85�. (9)

The factors were correlated, and factor variances were set
equal to one. The unique variances were set to 0.5 for all
items. In Equation 9, the factors mimic the optimism and
pessimism factors. We generated data to investigate differ-
ent values for the correlations among the factors (�s � �.2,
�.4, �.6, and �.8).

Models A–D were estimated for each data set. All factor
variances were set equal to 1.0 to identify the models. All

Table 6
Empirical Rejection Rates at � � .05 for Alternative Models Fitted to Data Generated
According to a Two-Factor Model

Model used for estimation N � � �.2 � � �.4 � � �.6 � � �.8

Two-factor model 200 .06 .06 .06 .06
Bifactor model 1,000 .02 (959) .03 (979) .04 (975) .03 (962)
Random intercept one-factor model 200 .46 .30 .18 .10
Random intercept one-factor model 400 .81 .60 .34 .12
Random intercept one-factor model 600 .96 .82 .52 .16
One-factor model 200 1 1 1 .95

Note. 1,000 replications were used in each condition. All replications converged except when estimating a
bifactor model. In this case, the number of converged replications is given in parentheses. When the model used
for estimation is a two-factor model, rejection rates should be close to .05. When an alternative model is used
for estimation, high rates indicate that the true and estimated models are easily distinguishable, whereas rates
close to .05 indicate that the true and estimated models are indistinguishable.
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factor loadings and uniquenesses were freely estimated.
Empirical rejection rates at � � .05 are summarized in
Table 6.

First, we investigated whether the empirical rejection
rates of the chi-square test are correct when the model used
for estimation is the true model. In this case, the percentage
of times the chi-square test incorrectly rejects the model
should be close to the nominal rate (i.e., close to 5%). Table
6 shows that in this case, the test statistic behaves correctly.
Rejection rates are close to nominal rates even with small
samples (N � 200).

Next, we investigate the percentage of times the test
statistic correctly rejects the model when the model used in
the estimation is not the model used to generate the data.
This is the empirical power to reject a false model. High
rejection rates indicate that the true and estimated models
are easily distinguishable, whereas rates close to .05 indi-
cate that the true and estimated models are indistinguish-
able. Table 6 shows that a small sample (N � 200) suffices
to easily distinguish the two-factor model from the one-
factor model. Empirical power is 95% with this sample size
even when the correlation between the factors is �.8. How-
ever, we do not have any power to distinguish a two-factor
model from a bifactor model. Power ranges from 2% to 4%
even when the sample size is 1,000 observations. Also, a
two-factor model is not easily distinguishable from a ran-
dom intercept factor model when the correlation between
the factors is �.6 or smaller. When the correlation is �.6,
we reject the random intercept model more than 50% of the
time only when the sample size is 600 observations or
higher; when N � 200, we would reject the model only 18%
of the time, and when N � 400, 34% of the time.

Bifactor Model as Data Generation (True) Model

To generate data according to a bifactor model, we used
the following matrix of factor loadings:

�� � � .55 .65 .75 .85 �.55 �.65 �.75 �.85
� � � � 0 0 0 0
0 0 0 0 � � � �

�. (10)

The factors were uncorrelated, and factor variances were set
equal to one. The unique variances were set to 0.5 for all
items. In Equation 10, the first factor mimics the overall
optimism factor, and the other two factors mimic the spe-
cific optimism and specific pessimism factors. For simplic-
ity, we used a common factor loading for the specific factors
to generate the data. Also, we investigated different values
for the loadings of the specific factors (�s � 0.15, 0.20,
0.25, and 0.30).

Models A–D were estimated for each data set. All factor
variances were set equal to 1.0 to identify the models. All
factor loadings and uniquenesses were freely estimated.
Empirical rejection rates at � � .05 when data were esti-
mated using the different alternative Models A–D are sum-
marized in Table 7.

The test statistic behaves as it should when the model
used for estimation is the same used to generate the data.
However, note that the estimation does not always converge
even when 1,000 observations are used. In fact, when only
200 observations are used, the bifactor model converges in
one of the conditions only 54% of the time. In contrast, the
alternative models always converge even though they are
incorrect models in this case.

However, the statistic has no power whatsoever to dis-
tinguish between the bifactor model and the random inter-
cept model. Rejection rates are only 7% even when N �
1,000. Also, the chi-square statistic has extremely low
power to distinguish between the bifactor model and a
two-factor model. Rejection rates range from 8% to 22%
when N � 1,000. Finally, the chi-square difference test has
some power to distinguish between a one-factor model and
the bifactor model provided the loadings of the specific
factor are not too small. It will correctly reject the one-factor

Table 7
Empirical Rejection Rates at � � .05 for Alternative Models Fitted to Data Generated
According to a Bifactor Model

Model used for estimation N � � 0.15 � � 0.20 � � 0.25 � � 0.30

Bifactor model 200 .03 (538) .03 (594) .04 (656) .03 (649)
Bifactor model 1,000 .05 (930) .03 (964) .03 (930) .04 (960)
Random intercept one-factor model 1,000 .07 .07 .07 .07
Two-factor model 1,000 .08 .10 .12 .22
One-factor model 200 .11 .30 .65 .92
One-factor model 400 .20 .60 .93 1
One-factor model 1,000 .52 .97 1 1

Note. 1,000 replications were used in each condition. All replications converged except when estimating a
bifactor model. In this case, the number of converged replications is given in parentheses. When the model used
for estimation is the bifactor model, rejection rates should be close to .05. When an alternative model is used for
estimation, high rates indicate that the true and estimated models are easily distinguishable, whereas rates close
to .05 indicate that the true and estimated models are indistinguishable.

357RANDOM INTERCEPT FACTOR ANALYSIS



model more than 50% of the time when � � 0.25 if N � 200
(rejection rate 65%) and when � � 0.20 if N � 400
(rejection rate 60%). The power decreases quickly as the
magnitudes of the loadings of the specific factors decrease.

Random Intercept One-Factor Model as Data
Generation (True) Model

To generate data according to the random intercept one-
factor model, we used the following matrix of factor load-
ings:

�� � 
 .55 .65 .75 .85 � .55 � .65 � .75 � .85 �. (11)

The factor variance was set equal to one, and the unique
variances were set to 0.5 for all items. This factor mimics
the optimism factor. We added a random intercept to the
model that was uncorrelated with the substantive factor. We
investigated different values for the variance of the random
intercept (	s � 0.05, 0.10, 0.15, and 0.20).

The data generated in this way were estimated with
Models A–D described above. All factor variances were set
equal to 1.0 to identify the models. All factor loadings and
uniquenesses were freely estimated. Empirical rejection
rates at � � .05 are summarized in Table 8.

Again, when we used the true model for estimation, the
test statistic behaved as it should: Rejection rates were close
to nominal rates even in small samples (N � 200). Again,
we have almost no power to distinguish the true model from
a bifactor model. Rejection rates for the bifactor model are
close to rejection rates for the random intercept model even
with a sample size of 1,000 observations. On the other hand,
we can easily distinguish a random intercept one-factor
model from a one-factor model. Even with a sample size of
200 observations and even when the variance of the random
intercept is very small, a one-factor model is rejected 93%
of the time. Finally, we have some power to distinguish a
random intercept one-factor model and a two-factor model
when the variance of the intercept is not too small (	 �

0.15) and sample size is large (N � 400). Below these
conditions, power is less than 50%.

Summary of the Simulation Results

The bifactor model is a troublesome model. First, it may
not converge. Nonconvergence is more likely when a small
sample is used and the factor loadings of the specific factors
are equal in the population. Second, a bifactor model is
likely to provide a good fit in applications even if it is an
incorrect model. The power to reject this model when the
true model is a random intercept one-factor model or a
two-factor model is extremely low even in large samples.
As a result, a researcher who finds a bifactor model to
reproduce the data adequately cannot be sure it is the correct
model. The bifactor model lacks parsimony and fits a vari-
ety of data structures.

The random intercept one-factor model and a two-factor
model can only safely be distinguished when sample sizes
are 400 observations or greater, provided that the true model
is not too extreme (small 	 or large � in absolute value).
Even with samples of this size, a researcher may be con-
fused as to which of the two models is the correct one if (a)
the variance 	 of the random intercept is smaller than 0.15
or (b) the correlation � among the factors is larger than .5 in
absolute value. In our LOT example, sample size was
roughly 400, the estimated variance of the random intercept
was 0.13, and the correlation among the factors was �.53.
Under these conditions, the power to reject the incorrect
model is roughly 50% according to the results of our small
simulation study.

Discussion

Researchers often use factor analysis to model the re-
sponses of individuals to a set of questionnaire items for
which some graded response scale is provided. Provided
that the number of categories per item is five or more, the

Table 8
Empirical Rejection Rates at � � .05 for Alternative Models Fitted to Data Generated
According to a Random Intercept One-Factor Model

Model used for estimation N 	 � 0.05 	 � 0.10 	 � 0.15 	 � 0.20

Random intercept one-factor model 200 .07 .07 .07 .07
Bifactor model 1,000 .04 (954) .05 (965) .10 (971) .16 (977)
Two-factor model 200 .09 .17 .27 .38
Two-factor model 400 .13 .33 .54 .71
Two-factor model 600 .18 .48 .77 .91
Two-factor model 1,000 .29 .75 .97 1
One-factor model 200 .93 1 1 1

Note. 1,000 replications were used in each condition. All replications converged except when estimating a
bifactor model. In this case, the number of converged replications is given in parentheses. When the model used
for estimation is the random intercept one-factor model, rejection rates should be close to .05. When an
alternative model is used for estimation, high rates indicate that the true and estimated models are easily
distinguishable, whereas rates close to .05 indicate that the true and estimated models are indistinguishable.
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common factor model may be a reasonable model in these
situations. Yet, in applications researchers sometimes find
that when m factors were expected on the basis of substan-
tive theory, m � 1 factors are needed in practice to ade-
quately reproduce the data. We have suggested that applied
researchers may wish to consider in this situation fitting an
m-factor model with a random intercept. Indeed, we have
shown that if one is willing to assume that respondents use
the response scale of questionnaire items idiosyncratically,
a random component needs to be incorporated into the
intercept of the model, which results in an additional factor
when fitting the data.

Here, we have illustrated the usefulness of this new model
by fitting a one-factor model with a random intercept to the
LOT, a well-known personality questionnaire for which a
unidimensional model was proposed substantively but for
which statistically a two-factor model appeared to be
needed. In our application, we compared the one-factor
random intercept model with a one-factor model, a two-
factor model, a bifactor model, and a CT-C(M-1) model.
Only the one-factor model could be statistically rejected in
this application. The substantive interpretation of and dif-
ference between each of these models should be taken into
account when choosing among these models in situations in
which goodness-of-fit results and model selection criteria
are similar.

Compared with the two-factor model, the one-factor
model with a random intercept enables researchers to main-
tain their original substantive hypothesis, namely, that op-
timism is a unidimensional construct. Also, when the model
fits, we have shown that factor score estimates can be highly
correlated with summative scores, so that the latter can be
used as proxies for the latent factors, just as in factor models
without a random intercept. Furthermore, when positive and
negatively worded items are simultaneously modeled, the
random intercept model may group items worded differ-
ently into the same dimension. In contrast, the two factor
model groups the items according to their wording: Posi-
tively worded items load on one dimension, and negatively
worded items load on the other dimension. The two-factor
model should be preferred to the one-factor random inter-
cept model only when the additional factor uncovered by
the analysis provides additional insight in the phenomenon
under investigation, as when there are distinct patterns of
relations with exogenous variables (discriminant validity).
This is more likely to occur as the correlation between the
two factors decreases in magnitude toward zero.

Compared with the bifactor model, the one-factor model
with a random intercept is a more parsimonious model.
Being a highly parameterized model, the bifactor model
may be empirically underidentified, leading to nonconver-
gent or improper solutions. Also, researchers should be
cautious of the bifactor model as it may yield a good fit to
the data even when it is an incorrect model. In contrast, the
random intercept model is free from these problems. The

bifactor model should be preferred to the random intercept
model when researchers are interested in domain specific
factors over and above the general factor and, particularly,
when researchers are interested in their differential predic-
tive validity (Chen, West, & Sousa, 2006). Another problem
frequently encountered in the bifactor model is factor col-
lapse. This occurs when all the factor loading estimates for
one or more of the domain specific factors are nonsignifi-
cant. A similar problem may be encountered in the random
intercept model, namely, all the factor loadings for one or
more substantive factors may be nonsignificant. These prob-
lems are likely to be caused by model misspecification.
Therefore, researchers should be cautious of factor collapse
in either model.

Finally, a limitation of the CT-C(M-1) model is that for
any given data in which k methods are used, there are k �
1 possible CT-C(M-1) models. Each of these models is
based on a different reference method, yields a different fit
to the data at hand (Eid, 2000), and may lead to a different
substantive interpretation. Also, researchers should be cau-
tious about using a CT-C(M-1) model when the method
factor accounts for a larger percentage of variance of the
observed variables than the trait factors.

In closing, when fitting the random intercept model, we
recommend that researchers specify alternative models, ex-
amine their goodness of fit to the data, use sequential
chi-square difference tests (Bentler & Bonett, 1980) for
nested models, examine parameter estimates, and base con-
clusions on theoretical predictions (as we would recom-
mend for any modeling procedure). In particular, when
fitting the random intercept model, researchers should check
whether (a) the variance of the random intercept is smaller
than the variance of the substantive factors and (b) the
loadings for the substantive factors are significant.

Conclusions

We believe that the model proposed here provides applied
researchers with a valuable tool to model questionnaire data
in which it is likely that there are method effects due to
consistent individual differences in the use of the response
scale. Although the example presented here had only one
substantive factor, this model may be used with any number
of substantive factors.

A clear limitation of the random intercept model is the
assumption (needed to identify the model) that the random
intercept and the substantive factors be uncorrelated. Con-
sider the pain tolerance example presented at the beginning
of this article. Imagine college students and construction
workers are receiving shocks through their fingertips. The
level on the pain latent variable is very likely associated
with the intercept because the two groups are likely to differ
in the calluses on their fingers, which affect their general
tolerance to pain.

The common factor analysis model also makes the as-
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sumption that the factor loadings are fixed and do not vary
across individuals (Wolfle, 1940). The factor loadings are
still invariant across respondents in the model proposed
here. Although, as Wolfle (1940) argued, it may not be
reasonable to assume that the factor loadings are invariant
across individuals, we do not believe that such an extension
is feasible with the traditional (frequentist) framework used
here. However, factor models with random loadings may be
feasible within a Bayesian framework.

Although we have presented the proposed model in the
context of modeling questionnaire items, there are other
situations in which it may be used. One further example is
when several tests are given to measure a latent construct
and the tests are speeded. The addition of a random intercept
allows for consistent individual differences due to speed.
That is, respondents who are slow on one test are likely to
be slow on all of them, and those who are fast on one test
are likely to be fast on all of them. Essentially, an individ-
ual’s outcome is due to his or her level on the latent
construct, the intercepts for each test, and an adjustment
(intercept) for his or her speediness. In closing, we believe
that the model proposed here may offer a more parsimoni-
ous and accurate view of individual differences in the use of
response scales than those models that specify additional
substantive factors, correlated residuals, or a bifactor model.
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Appendix

Some Technical Details

Mean and Covariance Structure Implied by the
Random Intercept Factor Model

Let � � cov[���], � � cov[e�e], and 	 � cov[���] (a
scalar). We can rewrite Assumptions 1–6 as follows:

1. E[�] � 0.

2. E[e] � 0.

3. � diagonal.

4. cov[e��] � 0.

5. E[�] � 0.

6. cov[���] � 0 and cov[e��] � 0.

Now, putting together the two equations in Equation 5,
we have

y � � � 1� � �� � e. (A1)

Then, the mean structure for y implied by the random
intercept factor model is

E�y]�� � 1E��� � �E��� � E�e� � �.

To obtain the covariance structure implied by this model,
we note that by Assumptions 1–6,

cov�y�y� � 1cov�����1� � �cov�
�
���

� cov�e�e� � 	11� � ���� � �.

The random intercept model can be easily estimated using
conventional software for structural equation modeling by
defining a common factor model

y � � � �*�* � e, (A2)

where �* � 
�|��� is a (m � 1) � 1 vector of random
variables, which consists of the random part of the intercept,
�, and the m common factors, �, and

�* � 
1|�� �* � �	 0
0 ��, (A3)

where �* is a p � (m � 1) matrix of loadings and �* is the
covariance matrix of �*. Thus, a model with m � 1 common
factors where the matrices of factor loadings and factor covari-
ances have the pattern in Equation A3, or alternatively

�* � 
�	1|�� �* � �1 0
0 ��, (A4)

is equivalent to a factor model with m common factors and
a random intercept.

To see that the m � 1 factor model in Equation A2 with
the pattern in Equation A4 or A3 implies the mean and
covariance structure in Equation 7, we first note that by
Assumptions 1–4, E[�*] � 0, cov[e��*] � 0, E[e] � 0,
cov[e�e] � �. Thus, E[y] � � � �*E[�*] � E[e] � �. As
for the covariance matrix, we have

cov�y�y� � �*cov��*�����*� � cov�e�e�,

which by Equation A4 or A3 simplifies to the covariance
structure given in Equation 7.

Effect of Reverse Coding a Subset of Items on the
Random Intercept Factor Model

Let y denote the observed variables prior to recoding and
z denote the recoded variables. We partition z into z1 and z2,
where z1 denotes the set of items that are not recoded, z1 �

(Appendix continues)
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y1, and z2 denotes the set of items that are reverse coded,
z2 � (k � 1) 1 � y2.

The mean and covariance structures under the random
intercept factor model for the original variables are �y �
� and �y � ���� � �, where we partition � and �

according to the partitioning of y as � � ��1

�2
� and �

� �1 �1

1 �2
�, and � is given by Equation A3.

Now, the reverse coding transformation is

�z1

z2
� � � 0


k � 1�1� � �I 0
0 � I��yt

y2
�.

Thus, the mean and covariance structures under the random
intercept factor model for the recoded variables are �z � �*
and �z � �*��*� � �, where

�* � � �1


k � 1�1 � �2
� �* � � 1 �1

� 1 � �2
�.
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